Engineering (mostly) Supramolecular Nanosystems at Surfaces

Control of Matter at the Nanoscale

Johannes V. Barth

Institut de Physique des Nanostructures
Ecole Polytechnique Fédérale de Lausanne, Suisse

Advanced Materials and Process Engineering Laboratory
Departments of Chemistry and Physics & Astronomy
University of British Columbia, Vancouver, Canada
Outline

• principles of supramolecular engineering

• semantic excursion on « self-processes »
 → origins of terminology & notions on its interpretation

• self-organized growth at surfaces
 → nanoscale constructions atom by atom
 → patterns and quantum dots by strain relief
 → 2-dim synthesis of H-bonded architectures
 → design of low-dim metallosupramolecular systems
Supramolecular Engineering
From Molecules to Functional Materials
Meaning of Supramolecular Chemistry

Development and Use of Molecules with Structure-Specific Interactions of High Selectivity

Chemistry « beyond the molecule »
- inspired by animate systems
- rationalize molecular recognition
- control noncovalent interactions
 → hydrogen and coordination bonds
- self-assembly
- supramolecular engineering
- supramolecular functional materials
- supramolecular technology
The Molecule of Life: DNA

- base pairs in DNA with complementary groups for hydrogen bonding
 ⇒ molecular recognition, stabilization of double helix

Noncovalent Interactions are Ubiquitous in Biology
Principles of Hydrogen Bonding

H_2O

$\text{XH} \cdots \text{A}$

(proton) (proton)

donor acceptor

$\text{X} : \text{electronegative atom}$

$\text{e.g., O, N, S, P, Se, C}$

$\text{A} : \text{lone electron pair of}$

$\text{electronegative atom or}$

π orbital

$\text{H} \cdots \text{A distance : } \sim 1.2 \text{ – } 3 \, \text{Å}$

• Hydrogen bonds feature

 - directionality
 - selectivity
 - versatility

$E \sim 0.2 \text{ eV}$

water dimer : OH bonds polar

\rightarrow OH dipoles point to filled p orbitals

Water Clusters

bond motif in solid

small ring clusters for max. H-bonding

five isomers for hexamer, close in energy (cage lowest)

• barely controllable molecular arrangements

Cf.: http://www.sbu.ac.uk/water/
Supramolecular Engineering

molecular linkage by coupling of functional carboxyl groups

1-dim linear chains

3-dim architecture

2-dim honeycomb sheet
Synthons & Tectons

- Synthon
- Tecton

Chain motif using linear linkers

Honeycomb network from complementary tectons (melamine – cyanuric acid)

Information contained in molecules
→ supramolecular organization

Energetics and Need of Cooperativity

- Assemblies based on single H-bonds have low stability.

- Typical energy range: $E \sim 0.2 - 0.4$ eV

- Strong: $E > 0.5$ eV

- Weak: $E < 0.2$ eV

- Cooperative H-bonding in artificial systems

- Multiple links!

- Assemblies based on single H-bonds have low stability

DNA

Cooperative H-bonding in artificial systems

Supramolecular Self-Assembly

9 components, 36 hydrogen bonds

designed molecules \(\rightarrow\) self-assembly \(\rightarrow\) highly organized systems

molecular recognition

\(\Rightarrow\) functional materials for supramolecular technology

Univ. Twente, MESA+
Group D.N. Reinhoudt

Designing H-bonded Nanotubes

cyclic peptide of amino acids \rightarrow self-assembled organic nanotube

insertion of biomimetic assembly in bacterial membrane increases transmembrane mobility

\Rightarrow potential selective antibacterial agent
Supramolecular Polymers

Supramolecular Polymers are polymeric assemblies with reversible bonding, often referred to as ‘molecular velcro’.

The self-complementary ureidopyrimidinone derivative leads to quadruple H-bonding, resulting in tunable polymeric materials.

- Self-healing polymer networks
- Easy production of copolymers
- Thermoplastic elastomers

Metal Coordination in Biology

Operating unit:
5-coordinate Fe site

Fe-heme complex

Breathing:
Capture & release of O_2
Coordination Compounds

- Square planar
- Tetrahedral
- Octahedral

Central metal ion binds to several ligands (e⁻ pair donors)

Stereoisomers

- *cis*-\([\text{Pt(NH}_3\text{)}_2\text{Cl}_2]\)
- *trans*-\([\text{Pt(NH}_3\text{)}_2\text{Cl}_2]\)

- Anticancer drug (cisplatin)
- No therapeutic use
Bonding Types and Ligands

Bonding Type

unidentate

Typical bond strength ~ 0.5 – 1 eV → robust architectures

- **pyridine ligands**
 - ![Pyridine ligand](image)

- **carboxylate**
 - ![Carboxylate](image)

bidentate

- **porphyrin ligand**
 - ![Porphyrin ligand](image)

- **terpyridine**
 - ![Terpyridine](image)

- **ortho-phenanthroline**
 - ![Ortho-phenanthroline](image)
Metallosupramolecular Chemistry

Univ. Louis Pasteur, Strasbourg, Group J.-M. Lehn

chiral double helicate

(2×2) Fe nanoarray

building blocks → metal-ligand interactions → polynuclear complex

⇒ molecular engineering of advanced materials
- frameworks, sensors, photosensitizers, molecular magnets
Tailored Metal-Organic Coordination Frameworks

\[\text{Zn}_4(O)O_{12}C_6 \] ditopic carboxylate linkers

⇒ tuning of homogenous periodic pores
cavity range : 3.8 – 28.8 Å

octahedral Zn-O-C cluster
van der Waals cavity
TPDC linker

methane uptake in MOF6

Hybrid Systems for Sensing Devices

bifunctional anchor

Porphyrin

Detection of low-concentration NO in physiological solutions

Unfunctionalized GaAs

Molecular controlled semiconductor resistor

Nanoelectronics with Coordination Compounds

single-atom transistor

conducting supramolecular films
Supramolecular Dyes in Solar Cells

TiO$_2$ nanocrystalline film

N3 dye
Ru-complex as sensitizer

COO$^-$

TiO$_2$ (anatase)

charge transfer at functionalized semiconductor surface

Key Messages from Introductory Lesson

- **Supramolecular Chemistry**
 Development and use of molecules with structure specific noncovalent interactions, notably H-bonding & coordination bonds

- **Molecular Recognition**
 Controls the selective linkage between two molecules, or a molecule and a metal atom

- **Self-Assembly**
 Spontaneous association of complementary units to an integral whole, stabilized by noncovalent bonds

- **Supramolecular Engineering**
 Art of construction for highly organized molecular architectures

- **Supramolecular Materials**
 Meet function and performance criteria using supramolecular engineering and appropriate self-assembly strategies

- **Supramolecular Technology**
 Use of supramolecular materials & processes for specific needs and device concepts
What are Self-Processes ??!?

- self-organization
- self-assembly
- self-organized growth
- self-replication, self-correction, …

- widespread confusion about meaning & significance
- very popular hype & buzz words in ‘nano‘-community
- limitlessly elastic term … overused to the point of cliché

[G. Whitesides on self-assembly, Science 2002]
Self-Organization

- term in use since ~ 1898

- organization of oneself or itself; specifically: the act or process of forming or joining a labor union

- no entry in scientific sense

Oxford English Dictionary - no entry
Self-Organization: Publication Trends

1947: Principles of the Self-Organizing Dynamic System
W. Ross Ashby, Journal of General Psychology, volume 37, pages 125-128

1953: SELF-ORGANIZATION AS A FACTOR IN THE PERFORMANCE OF SELECTED COGNITIVE TASKS

1971: SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES
EIGEN M, NATURWISSENSCHAFTEN 58 (10): 465–times cited 1087

1977: Self-organization in non-equilibrium systems: From dissipative structure formation to order through fluctuations

1978: Synergetics - An Introduction. Nonequilibrium Phase Transition and Self-Organization in Physics, Chemistry, and Biology
Haken, H. (Springer, Berlin)

1990: PERSPECTIVES IN SUPRAMOLECULAR CHEMISTRY - FROM MOLECULAR RECOGNITION TOWARDS MOLECULAR INFORMATION-PROCESSING AND SELF-ORGANIZATION
LEHN JM, ANGEWANDTE CHEMIE - INT. ED. 29 (11): 1304-1319 NOV 1990 – times cited 1411
Systems Associated with Self-Organization

- Belousov-Zhabotinsky reaction
- Sand dune shaped by wind
- Collective movement of social beings

- Pattern formation in inanimate & biological systems
- Emergence of order
- Dynamic features
Self-Organization: Definitions & Use

Self-organization is a process in which a pattern at the global level of a system emerges solely from numerous interactions among the lower level components of the system. [Deneubourg 1977]

- **physics** - order phenomena in non-equilibrium thermodynamics → fluid dynamics, lasers … galaxy formation
 - (spontaneous symmetry breaking, crystallization, …)
- **chemistry** - oscillating chemical reactions, reaction-diffusion systems
 - synonyme for self-assembly
- **biology** - origin of life
 - lipid bilayer membranes
 - morphogenesis
 - homeostasis (self-regulation of cells, organisms)
 - social behavior (fish swarms, insects, flocks, …)
- **mathematics, social sciences, cybernetics, geosciences, economy, …**
The Self-Assembly Paradigm

- term in use since ~ 1960s

Oxford English Dictionary

1. Subsequent assembly of something bought in the form of a kit; usu. *attrib.*, denoting items (e.g. furniture) sold in this form.

 → 1966 in G. N. Leech Eng. in Advertising (1966) xv. 137

 ... *the luxury of a Built-in Bedroom at a price you can really afford*

 With Dovetail Self-assembly Units

 → “*Self-assembly means not having to pay the cost of someone in a factory doing it for you*”

 (www.ikea.co.uk - in rubrique FAQ)

2. The spontaneous formation of a sub-cellular particle from its components, e.g. that of a ribosome or of a virus in a medium containing the appropriate RNA and proteins.

 → 1969 Jrnl. Molecular Biol. XL. 412 :

 We feel that the general principle of self-assembly revealed in the present in vitro system also operates in vivo.

 → ... *Thus all the information necessary to assemble the particle must be contained in its components, that is, the (tobacco mosaic) virus “self assembles”.*

 (A. Klug, Nobel lecture 1982)
The Archetype of a Self-Assembled System

Tobacco Mosaic Virus
(Length : 300 nm, Diameter : 18 nm)

- helix stabilized by hydrogen bonds
 - ca. 2130 identical protein units (à 158 amino acids)
 - central RNA strand (6390 base pairs)
- mixing of separated components under appropriate conditions *in vitro*

⇒ self-assembly of active virus from inactive subunits

Complementary units spontaneously assemble to an integral whole, stabilized by many noncovalent interactions

Self-Assembly: Publication Trends

1967: STUDIES ON SELF-ASSEMBLY OF PHAGE T2 HEAD
POGLAZOV BF, KESYANZH.VV, KOSOUROV GI; BIOCHEMISTRY-MOSCOW 32: 588 – times cited 0

1976: THEORY OF SELF-ASSEMBLY OF HYDROCARBON AMPHIPHILES INTO MICELLES AND BILAYERS
ISRAELACHVILI JN, MITCHELL DJ, NINHAM BW

1986: BEYOND SELF-ASSEMBLY - FROM MICROTUBULES TO MORPHOGENESIS
KIRSCHNER M, MITCHISON T; CELL 45 (3): 329-342 MAY 9 – times cited 616

1991: MOLECULAR SELF-ASSEMBLY AND NANOQUIMISTRY - A CHEMICAL STRATEGY FOR THE SYNTHESIS OF NANOSTRUCTURES
WHITESIDES GM, MATHIAS JP, SETO CT; SCIENCE 254 (5036): 1312-1319 NOV 29 – times cited 1063

1996: Self-assembly in natural and unnatural systems
Philp D, Stoddart JF; ANGEWANDTE CHEMIE-INT. ED. 35 (11): 1155-1196 JUN 1 – times cited 266
Snowflakes & Galaxies

- autonomous ordering in accumulation of matter
Self-Organized Growth of Quantum Dots

molecular beam epitaxy chamber

Ge pyramids on Si(100)

Self-organized growth in strained structures

→ simple and efficient way to build regular semiconductor nanoarchitectures

Appl. Phys. Lett. 64, 196 (1994); 74, 994 (1999)
Self-Organized Growth : Publication Trends

- in use since ~ 1990s

→ ISI-WOS search : 315 records, some plant science, mostly semiconductor quantum dot & nanoscience community; starting 1991

1991 : FEEDBACK INDUCTION - A POSSIBLE EXPLANATION FOR SELF-ORGANIZED GROWTH OF X(2) GRATING IN SILICA FIBERS
ZHENG XH, CARROLL JE, OPTICAL AND QUANTUM ELECTRONICS 23 : 29-33– times cited : 0

1992 : PHYLLOTAXIS AS A PHYSICAL SELF-ORGANIZED GROWTH PROCESS
S Douady & Y Couder, Phys. Rev. Lett. 68, 2098

1994 : SELF-ORGANIZED GROWTH OF REGULAR NANOMETER-SCALE InAs DOTS ON GaAs
MOISON JM, HOUZAY F, BARTHE F, et al. APPLIED PHYSICS LETTERS 64 (2): 196-198
– times cited : 660

1998 : SELF-ORGANIZED GROWTH OF NANOSTRUCTURE ARRAYS ON STRAIN RELIEF PATTERNS
H BRUNE, M GIOVANNINI, K BROMANN & K KERN, Nature 394 : 451
Thermodynamic vs. Kinetic Control

Crystallization pathways
[ΔG : free energy of activation]

- spatial & temporal evolution of system controls final architecture
 → analogous principles in biomineralization
self-assembly
 - spontaneous formation of a textured product with
definite shape integrating clearly identifiable components
 - proceeds near equilibrium in closed systems
 - ensembles of identical products can be obtained or even replicated

self-organized growth
 - order phenomena controlled by (mesoscale) force fields or kinetic
limitations arising in processes mediating accumulation of matter
 - corresponding products are uniform to a certain extent but a priori not
identical at the atomic or molecular scale

self-organization (substantial)
 - spatiotemporal order phenomena in open systems far from equilibrium
(kinetically unlimited continuous substance and energy exchange with environment)
 - autonomous coding or superior spatial organization of matter beyond
self-assembly or self-organized growth
(→ evolution, morphogenesis, …)